Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose.
نویسندگان
چکیده
Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dihydroxymethylfuran (DHMF) or other species, such as 2,5-dimethylfuran, on solid metal electrodes in neutral media is addressed, both in the absence and in the presence of glucose. The reaction is studied by combining voltammetry with on-line product analysis by using HPLC, which provides both qualitative and quantitative information about the reaction products as a function of electrode potential. Three groups of catalysts show different selectivity towards: (1) DHMF (Fe, Ni, Ag, Zn, Cd, and In), (2) DHMF and other products (Pd, Al, Bi, and Pb), depending on the applied potential, and (3) other products (Co, Au, Cu, Sn, and Sb) through HMF hydrogenolysis. The rate of electrocatalytic HMF hydrogenation is not strongly catalyst-dependent because all catalysts show similar onset potentials (-0.5 ± 0.2 V) in the presence of HMF. However, the intrinsic properties of the catalysts determine the reaction pathway towards DHMF or other products. Ag showed the highest activity towards DHMF formation (up to 13.1 mM cm(-2) with high selectivity> 85%). HMF hydrogenation is faster than glucose hydrogenation on all metals. For transition metals, the presence of glucose enhances the formation of DHMF and suppresses the hydrogenolysis of HMF. On poor metals such as Zn, Cd, and In, glucose enhances DHMF formation; however, its contribution in the presence of Bi, Pb, Sn, and Sb is limited. Remarkably, in the presence of HMF, glucose hydrogenation itself is largely suppressed or even absent. The first electron-transfer step during HMF reduction is not metal-dependent, suggesting a non-catalytic reaction with proton transfer directly from water in the electrolyte.
منابع مشابه
Evaluation of sodium dodecyl sulfate effects; the response of modified carbon paste electrode with nickel oxide nanoparticles in the presence of methanol
Synthesis of nickel oxide nanoparticles (NiO NPs) was carried out by Marrubium astranicum leaf extract. The average of particle sizes for NiO NPs was 40 nm. NiO NPs modified carbon paste electrodes in the absence (CPE/NiO NPs) and the presence of sodium dodecyl sulfate (CPE/NiO NPs/SDS) were examined for the electrocatalytic oxidation of methanol in alkaline solutions. The cyclic volta...
متن کاملA two-step approach for the catalytic conversion of glucose to 2,5-dimethylfuran in ionic liquids
Lignocellulosic biomass is an attractive resource for producing transportation fuels, and consequently novel approaches are being sought for transforming the lignin and cellulosic constituents of biomass to fuels or fuel additives. Glucose, the monomer of cellulose, is a good starting material for exploring such chemistries. We report here the results of an investigation aimed at identifying ca...
متن کاملElectrocatalytic oxidation of glucose on the modified carbon paste electrode with sodalite nanozeolite for fuel cell
In this study, a sodalite nanozeolite was synthesized and characterized by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Following the morphology evolution of the sodalite nanozeolite in the SEM images illustrates the formation of the spherical particle with a size between 60 and 80 nm. Then, carbon paste electrode (CPE) was modified by sodalite nanozeolite and Ni2+ ions. Th...
متن کاملConversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles.
Supported Au nanoparticles showed efficient catalytic performance for the ring rearrangement of 5-hydroxymethylfurfural (HMF) to a cyclopentanone derivative, 3-hydroxymethylcyclopentanone (HCPN), by taking advantage of the selective hydrogenation on Au nanoparticles and the Lewis acid catalysis of metal oxide supports. Among various metal oxide supported Au catalysts, the highest yield of HCPN ...
متن کاملHydroxymethylfurfural Content and Sugar Profile of Honey Available in Bangladesh Using Validated HPLC-PDA and HPLC-RID
Background: Honey has a lot of reputation because of its supposed medicinal properties. In this study, Hydroxymethylfurfural (HMF), sugars, and Fructose/Glucose ratio of honey in Bangladesh were assessed for adulteration and authenticity evaluation. Methods: Seventy honey samples collected from different districts of Bangladesh were analyzed by High Performance Liquid Chromatography (HPLC) for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ChemSusChem
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2013